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Henderson M, Serences JT. Human frontoparietal cortex repre-
sents behaviorally relevant target status based on abstract object
features. J Neurophysiol 121: 1410–1427, 2019. First published
February 13, 2019; doi:10.1152/jn.00015.2019.—Searching for items
that are useful given current goals, or “target” recognition, requires
observers to flexibly attend to certain object properties at the expense
of others. This could involve focusing on the identity of an object
while ignoring identity-preserving transformations such as changes in
viewpoint or focusing on its current viewpoint while ignoring its
identity. To effectively filter out variation due to the irrelevant
dimension, performing either type of task is likely to require high-
level, abstract search templates. Past work has found target recogni-
tion signals in areas of ventral visual cortex and in subregions of
parietal and frontal cortex. However, target status in these tasks is
typically associated with the identity of an object, rather than identity-
orthogonal properties such as object viewpoint. In this study, we used
a task that required subjects to identify novel object stimuli as targets
according to either identity or viewpoint, each of which was not
predictable from low-level properties such as shape. We performed
functional MRI in human subjects of both sexes and measured the
strength of target-match signals in areas of visual, parietal, and frontal
cortex. Our multivariate analyses suggest that the multiple-demand
(MD) network, including subregions of parietal and frontal cortex,
encodes information about an object’s status as a target in the relevant
dimension only, across changes in the irrelevant dimension. Further-
more, there was more target-related information in MD regions on
correct compared with incorrect trials, suggesting a strong link be-
tween MD target signals and behavior.

NEW & NOTEWORTHY Real-world target detection tasks, such as
searching for a car in a crowded parking lot, require both flexibility
and abstraction. We investigated the neural basis of these abilities
using a task that required invariant representations of either object
identity or viewpoint. Multivariate decoding analyses of our whole
brain functional MRI data reveal that invariant target representations
are most pronounced in frontal and parietal regions, and the strength
of these representations is associated with behavioral performance.

fMRI; frontoparietal; invariance; object; target recognition

INTRODUCTION

To flexibly guide behavior, humans can choose to hold in
mind information about the identity of sought-after items or

about the current state of those items. For example, when
searching the parking lot at the end of a long day, you might
search for the presence of your blue sedan, but when crossing
the street, you might search for any car moving quickly in the
rightward direction. The former task is challenging because the
retinal projection of your car can have considerable variability
due to changes in pose, position, and environmental conditions,
whereas the latter task is challenging because relevant cars may
be a variety of makes, models, sizes, and colors (DiCarlo and
Cox 2007; Ito et al. 1995; Lueschow et al. 1994; Marr and
Nishihara 1978; Tanaka 1993). To overcome both types of
challenges, recognizing relevant targets under realistic viewing
conditions is likely to require high-level, abstract search tem-
plates (Biederman 2000; Freiwald and Tsao 2010; Riesenhuber
and Poggio 2000; Tarr et al. 1998).

Such abstract search templates have been found in multiple
brain regions. In inferotemporal (IT) cortex, neurons encode
object identity across identity-preserving transformations, even
during passive viewing (Anzellotti et al. 2014; Erez et al. 2016;
Freiwald and Tsao 2010; Tanaka 1996). Neurons in IT and
entorhinal cortex (ERC) also signal the target status of objects,
both when targets can be identified on the basis of an exact
match of retinal input and when targets have to be identified
across changes in size and position (Lueschow et al. 1994;
Miller and Desimone 1994; Pagan et al. 2013; Roth and Rust
2018; Woloszyn and Sheinberg 2009). In addition to these
ventral regions, neurons in prefrontal cortex (PFC) have been
shown to signal the target status of objects, both for superor-
dinate and subordinate identification tasks (Freedman et al.
2003; Kadohisa et al. 2013; McKee et al. 2014; Miller et al.
1996).

In agreement with the single-unit modulations in prefrontal
cortex, recent studies in humans suggest that a set of frontal
and parietal regions, collectively referred to as the multiple-
demand (MD) network, may play a role in target selection by
representing objects according to their task-relevant properties
(Bracci et al. 2017; Duncan 2010; Fedorenko et al. 2013;
Jackson et al. 2017; Vaziri-Pashkam and Xu 2017). Accord-
ingly, MD representations have also been found to differentiate
images on the basis of their status as a target object or category,
and these representations exhibit invariance across changes in
low-level image properties (Erez and Duncan 2015; Guo et al.
2012). Target representations in frontoparietal regions are also

Address for reprint requests and other correspondence: M. Henderson,
Neurosciences Graduate Program, University of California, San Diego, 9500
Gilman Dr., La Jolla, CA, 92093 (e-mail: mmhender@ucsd.edu).

J Neurophysiol 121: 1410–1427, 2019.
First published February 13, 2019; doi:10.1152/jn.00015.2019.

1410 0022-3077/19 Copyright © 2019 the American Physiological Society www.jn.org

Downloaded from journals.physiology.org/journal/jn (073.214.097.211) on May 15, 2023.

https://orcid.org/0000-0001-9375-6680
http://doi.org/10.1152/jn.00015.2019
mailto:mmhender@ucsd.edu


associated with decision confidence and task difficulty, sug-
gesting that they play a role in shaping decisions (Guo et al.
2012). However, in all past studies, sought targets were defined
according to the identity or category of the object, dimensions
whose representation in the visual system has been extensively
characterized (Conway 2018; DiCarlo and Cox 2007; Grill-
Spector 2003; Tanaka 1996). Less well studied is how the
visual system computes matches in dimensions orthogonal to
object identity, such as object pose or viewpoint. Past work has
demonstrated sensitivity to object viewpoint in multiple re-
gions of the human and primate brain, including IT cortex and
the intraparietal sulcus (IPS), but it is not yet clear how
viewpoint representations are involved in identification of
relevant targets (Andresen et al. 2009; Grill-Spector et al.
1999; Hong et al. 2016; Tanaka 1993; Valyear et al. 2006;
Ward et al. 2018). Thus, although we predict that representa-
tions of target status based on object viewpoint will be found
in the same frontoparietal regions known to encode target
status based on identity and category of objects, this has yet to
be shown.

In the present study we tested the hypothesis that regions of
the MD network support performance during a task where
target status is defined on the basis of either object identity or

object viewpoint. We generated a novel object stimulus set
(Fig. 1), in which three-dimensional (3D) objects of multiple
identities were rendered at multiple viewpoints. Subjects de-
termined the target status of objects according to either their
identity (identity task) or viewpoint (viewpoint task) while
ignoring the other dimension. Critically, this paradigm required
subjects to form viewpoint-invariant representations of identity
and identity-invariant representations of viewpoint, both of
which were defined so as not to be predictable from the
retinotopic shape of an object. We used multivariate pattern
analyses (MVPA) on single-trial voxel activation patterns to
decode the status of each image as a target in both the
task-relevant and the task-irrelevant dimensions. Our findings
suggest that whereas ventral visual cortex exhibits some sen-
sitivity to an object’s status as a target, regions of the MD
network encode robust, abstract target representations that are
sensitive to changes in task demands and that are selectively
linked with behavioral performance.

MATERIALS AND METHODS

Participants. Ten subjects (3 men) between the ages of 20 and 34
yr were recruited from the University of California, San Diego
(UCSD) community (mean age 24.7 � 4.7 yr), having normal or
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Fig. 1. Example set of images shown to a
subject during scanning, consisting of 6
unique object identities, each rendered at 4
viewpoints. Subjects were instructed either to
match the exact identity of the object irre-
spective of viewpoint (shown in rows of the
matrix) or to match the viewpoint of the object
irrespective of identity (columns of the matrix).
The 6 identities comprised 2 exemplars in each
of 3 categories, with categories defined by
overall body shape and exemplars defined by
details of the peripheral features (see insets for
examples of differentiating features). Object
viewpoint was generated in an arbitrarily de-
fined coordinate system so that low-level visual
features had a minimal contribution to the
viewpoint matching task (see METHODS for de-
tails). Two complete sets of novel objects were
generated, with half the subjects (5/10) viewing
set A and half viewing set B. The images shown
are from object set B; see Fig. 2 for examples of
object set A.
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corrected-to-normal vision. The study protocol was submitted to and
approved by the Institutional Review Board at UCSD, and all partic-
ipants provided written informed consent. Each subject performed a
behavioral training session lasting ~1 h, followed by one or two scan
sessions, each lasting ~2 h. Participants were compensated at a rate of
$10/h for behavioral training and $20/h for the scanning sessions.

Novel object sets and one-back tasks. All objects were generated
and rendered using Strata 3D CX software (version 7.6; Santa Clara,
UT). To ensure a variety of stimuli, we generated two unique sets of
objects and assigned half of our subjects (5 of 10) to object set A and
half to object set B (because we did not observe a difference in
performance between the 2 stimulus sets for either task, we combined
our analyses across all subjects). Each stimulus set comprised 3
categories of objects, each with 36 total exemplars. Objects within a
category shared a common body plan, including the shape of the main
body and the configuration of peripheral features around the body (see
Figs. 1 and 2). Exemplars in each category were differentiated by
small variations in the details of peripheral features, such as the size
or shape of a spike. These peripheral features always appeared in pairs
that were attached symmetrically to the body, making the overall
objects bilaterally symmetric. Feature details were always matched
within each peripheral feature pair, ensuring that even when one
feature in a pair was occluded at a particular viewpoint, the details
could always be discerned from the other feature in the pair. During
scanning, each subject viewed two exemplars in each category (se-

lected on an individual subject basis from the full set of 36 exemplars;
see below for details), giving a total of six object “identities” (2
exemplars in each of 3 categories). Each of the six object identities
was rendered from four different viewpoints, for a total of 24 unique
images shown to each subject.

While in the scanner, each subject performed two different one-
back tasks (identity task and viewpoint task). In the identity task,
subjects responded to each image on the basis of whether it matched
the identity of the immediately preceding image. Identity matches had
to be the same exemplar from the same category but did not have to
match in viewpoint. In the viewpoint task, subjects responded on the
basis of whether the current image matched the viewpoint of the
immediately preceding image, whereas both category and exemplar
status were irrelevant. In order for subjects to identify matches in
viewpoint between objects with different identities, they were trained
to recognize an arbitrary viewpoint of each object as its “frontal”
viewpoint, or a rotation of [0°, 0°] about the Y (vertical)- and Z
(front-back)-axes. All other viewpoints were then defined relative to
this reference point. The four viewpoints used, in coordinates of [Z
rotation, Y rotation], were [30°, 300°], [120°, 240°], [210°, 30°], and
[300°, 150°]. We defined viewpoint in this way to ensure that subjects
formed a representation of viewpoint that was largely invariant to 2D
shape. Importantly, because the frontal viewpoint was chosen arbi-
trarily, it was not systematically predictable from the overall axis of
elongation of the main body. As a result, images of the objects in
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Fig. 2. Example stimulus set from object set A
(see Fig. 1 and METHODS for details).
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different categories at the same viewpoint differed dramatically in the
shape they produced when projected onto a 2D plane.

Prescan training. Subjects were familiarized with the novel object
viewpoints during a self-guided session performed before scanning.
During the first half of the training session, subjects viewed a 3D
model of each of the three novel object categories and were able to
rotate the model around two axes using the arrow keys on a keyboard
(each key press gave a rotation of 30° about either the Y- or Z-axis).
During this entire exercise, the angular position of the object, ex-
pressed using the format “X rotation � m degrees, Y rotation � n
degrees,” was displayed at the top of the screen. Subjects were
encouraged to use the angular coordinates to learn how each view of
the object was defined relative to the arbitrarily chosen frontal ([0°,
0°]) position. During the second half of this training, subjects were
presented with images of all three categories simultaneously, at
matching viewpoints, and encouraged to study how the same view-
point was defined across categories. Subjects performed both parts of
this training at least once and were allowed to return to it as many
times as they wished. On average, subjects spent ~20 min on the
self-guided training. In addition to the self-guided training, subjects
performed several practice runs of the viewpoint task. During these
runs, the four object viewpoints that were used during scanning were
never used so that even though subjects were familiarized with
different viewpoints of each object category, they were not overex-
posed to the target viewpoints. After each viewpoint task practice run,
subjects could return to the self-guided viewpoint training, and they
repeated as many iterations of self-guided training and practice runs as
were necessary to reach 70% performance (between 4 and 10 runs
across subjects).

The six object identities viewed by each subject were selected on
the basis of a behavioral thresholding experiment performed before
scanning. This allowed us to control the difficulty of the identity task
by manipulating the similarity between the exemplars in each cate-
gory. The task used for thresholding was identical to the one-back
identity task used during scanning, but it used only objects from a
single category, presented at four random viewpoints. Subjects per-
formed six runs of this task, with two runs for each object category.
On the basis of their performance, we selected two exemplars in each
object category that were confusable ~70% of the time. Following this
thresholding procedure, subjects performed two practice runs of the
identity task, using the final set of exemplars that they would view
during scanning.

Immediately before each scanning session, subjects performed
another short self-guided training exercise (~5 min), in which they
were shown examples of the exact images they would see during
scanning. First, they were presented with the two exemplars in each
object category, side by side, and allowed to freely rotate the objects
using the arrow keys to compare the appearance of the two exemplars
from many viewpoints. Next, they were presented with images from
each category, side by side, at each of the four viewpoints they would
see during the task and encouraged to use this information to prepare
for the viewpoint task.

Behavioral task in the scanner. During scanning, subjects per-
formed between 8 and 11 runs each of the identity and viewpoint
tasks. Task runs always occurred in pairs with the identity task
followed by the viewpoint task. An identical sequence of visual
stimuli was presented on both runs in each pair so that visual
stimulation was perfectly matched between conditions. Each 6-min
run consisted of 48 trials, and each trial consisted of a single image
presentation for 1,500 ms, followed by a jittered intertrial interval
ranging from 2,000 to 6,000 ms. Each of the 24 images was shown
twice per run. The sequence of image presentations was pseudoran-
domly generated, with the constraint that there was a 0.50 probability
that the current stimulus was from the same category as the previous
stimulus (within-category trials). This constraint was adopted to more
closely equate the difficulty of the two tasks, because the viewpoint
task was inherently more difficult to solve on across-category trials,

and the identity task was more difficult to solve on within-category
trials. This resulted in a probability of 0.23 of any trial being a match
in either viewpoint or identity, and a probability of 0.04 of a match in
both dimensions.

In both tasks, subjects responded to every image by pressing a
button using either their index finger (“1”) or their middle finger (“2”),
depending on the current response mapping rule. Response mapping
rules were counterbalanced within each subject so that on half of the
runs the subject responded with 1 for “match” and 2 for “non-match,”
and on the other half of runs they responded with 1 for “non-match”
and 2 for “match.” The purpose of these different response mapping
rules was to ensure that match-related information was not con-
founded with motor responses.

Magnetic resonance imaging. All MRI scanning was performed on
a General Electric (GE) Discovery MR750 3.0-T research-dedicated
scanner at the UC San Diego Keck Center for Functional Magnetic
Resonance Imaging. Functional echo-planar imaging (EPI) data were
acquired using a Nova Medical 32-channel head coil (NMSC075-32-
3GE-MR750) and the Stanford Simultaneous Multi-Slice (SMS) EPI
sequence (MUX EPI), with a multiband factor of 8 and 9 axial slices
per band (total slices � 72; 2-mm3 isotropic; 0-mm gap; ma-
trix � 104 � 104; field of view � 20.8 cm; TR/TE � 800/35 ms; flip
angle � 52°; in-plane acceleration � 1). Image reconstruction proce-
dures and unaliasing procedures were performed on local servers
using reconstruction code from CNI (Center for Neural Imaging at
Stanford). The initial 16 repetition times (TRs) collected at sequence
onset served as reference images required for the transformation from
k-space to the image space. Two short (17 s) “topup” data sets were
collected during each session, using forward and reverse phase-
encoding directions. These images were used to estimate susceptibil-
ity-induced off-resonance fields (Andersson et al. 2003) and to correct
signal distortion in EPI sequences using FSL (FMRIB Software
Library) topup functionality (Jenkinson et al. 2012).

During each functional session, we also acquired an accelerated
anatomical scan using parallel imaging [GE ASSET on a fast spoiled
gradient-echo (FSPGR) T1-weighted sequence; 1 � 1 � 1-mm3 voxel
size; TR � 8,136 ms; TE � 3,172 ms; flip angle � 8°; 172 slices;
1-mm slice gap; 256 � 192-cm matrix size] using the same 32-
channel head coil. We also acquired one additional high-resolution
anatomical scan for each subject (1 � 1 � 1-mm3 voxel size; TR �
8,136 ms; TE � 3,172 ms; flip angle � 8°; 172 slices; 1-mm slice gap;
256 � 192-cm matrix size) during a separate retinotopic mapping
session using an Invivo eight-channel head coil. This scan produced
higher quality contrast between gray and white matter and was used
for segmentation, flattening, and visualizing retinotopic mapping data.

In addition to the multiband scan protocol described above, five
subjects participated in retinotopic mapping experiments using a
different scan protocol, previously reported (Sprague and Serences
2013). The remaining five subjects participated in retinotopic mapping
runs using the multiband protocol described above. Where possible,
the data used to generate retinotopic maps (see Retinotopic mapping
stimulus protocol) were combined across these sessions.

Preprocessing. First, the structural scan from each session was
processed in BrainVoyager 2.6.1 to align the anatomical and the
functional data sets. Automatic algorithms were used to adjust the
structural image intensity to correct for inhomogeneities, as well as to
remove the head and skull tissue. Structural scans were then aligned
to the anterior commissure-posterior commissure (AC-PC) plane
using manual landmark identification. Finally, an automatic registra-
tion algorithm was used to align the structural scan to the high-
definition structural scan collected during each subject’s retinotopic
mapping session. This high-definition structural scan was transformed
into Talairach space, and the parameters of this transformation were
used to transform all other scans for this subject into Talairach space.

Next, each functional run was aligned to the same-session struc-
tural scan. We then used BrainVoyager 2.6.1 to perform slice-time
correction, affine motion correction, and temporal high-pass filtering
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to remove first-, second-, and third-order signal drifts over the course
of each functional run. These data were spatially transformed into
Talairach space to align with the anatomical images. Finally, the
blood oxygen level-dependent (BOLD) signal in each voxel was
z-transformed within each run.

General linear model to estimate trial-by-trial responses. After
preprocessing, single-trial activation estimates (beta weights), which
were used for subsequent MVPA, were obtained using a general linear
model (GLM) with a design matrix created by convolving the trial
sequence with the canonical two-gamma hemodynamic response
function (HRF) as implemented in BrainVoyager (peak at 5 s, under-
shoot peak at 15 s, response undershoot ratio 6, response dispersion 1,
undershoot dispersion 1). Throughout this study, the same HRF
parameters were used for all GLM analyses.

Retinotopic mapping stimulus protocol. We followed previously
published retinotopic mapping protocols to define the visual areas V1,
V2, V3, V3AB, V4, IPS0–1, and IPS2–3 (Engel et al. 1997; Jerde and
Curtis 2013; Sereno et al. 1995; Swisher et al. 2007; Wandell et al.
2007; Winawer and Witthoft 2015). Subjects performed mapping runs
in which they viewed a contrast-reversing checkerboard stimulus (4
Hz) configured as a rotating wedge (10 cycles, 36 s/cycle), an
expanding ring (10 cycles, 36 s/cycle), or a bowtie (8 cycles, 40
s/cycle). To increase the quality of data from parietal regions, subjects
performed a covert attention task on the rotating wedge stimulus,
which required them to detect contrast-dimming events that occurred
occasionally (on average, 1 event occurred every 7.5 s) in a row of the
checkerboard (mean accuracy � 61.8 � 13.9%). This stimulus was
limited to a 22° � 22° field of view.

Multiple-demand localizer. To define regions of interest (ROIs) in
the MD network, we used an independent functional localizer to
identify voxels whose BOLD response was significantly modulated by
the load of a spatial working memory task (Duncan 2010; Fedorenko
et al. 2013). Subjects performed one or two runs of this task during
each functional scanning session. During each trial of this task,
subjects were first presented with an empty rectangular grid compris-
ing either 8 or 16 squares. Half of the squares in the grid were then
highlighted one at a time, and subjects were required to remember the
locations of the highlighted squares. Subjects were then shown a
probe grid and asked to report whether the highlighted squares
matched the remembered locations. Runs were divided into blocks
with either high or low load. Performance was significantly poorer on
high-load blocks (mean d= for low load � 2.48 � 0.28, mean d= for
high load � 1.04 � 0.21, P � 0.001; paired 2-tailed t-test).

We used the data from these runs to generate a statistical paramet-
ric map for each subject, which expressed the degree to which each
voxel showed elevated BOLD signal for high-load vs. low-load
working memory blocks. We defined a GLM with a regressor for each
block type and solved for the �-coefficients corresponding to each
load condition. Coefficients were then entered into a one-tailed,
repeated-measures t-test against a distribution with a mean of 0 [false
discovery rate (FDR)-corrected q � 0.05]. This resulted in a single
mask of load-selective voxels for each subject.

To subdivide this mask into the typical MD ROIs, we used a
group-level parcellation from a previously published data set (Fe-
dorenko et al. 2013). We used this parcellation to generate masks for
five ROIs of interest: the intraparietal sulcus (IPS), the superior
precentral sulcus (sPCS), the inferior precentral sulcus (iPCS), the
anterior insula/frontal operculum (AI/FO), and the inferior frontal
sulcus (IFS). Because we had already defined two posterior subre-
gions of the IPS, IPS0–1 and IPS2–3 (see Retinotopic mapping
stimulus protocol), we removed all voxels belonging to these retino-
topic regions from the larger IPS mask and used the remaining voxels
to define a region that we refer to as the superior IPS (sIPS). This was
done within each subject separately. We intersected each subject’s
mask of load-selective voxels with the mask for each ROI to generate
the final MD ROI definitions.

For one subject, this procedure failed to yield any voxels in the
sPCS ROI. Therefore, when performing group-level ANOVA of
decoding performance, we performed linear interpolation (Roth 1994)
based on sPCS responses in the remaining nine subjects to generate an
estimate of the missing value. We did this by calculating a t-score
comparing the missing subject’s d= score with those of the other nine
subjects in each ROI and condition where it was defined and using the
mean of these t-scores to estimate d= in sPCS for each condition. As
an alternative to this interpolation method, we also ran the repeated-
measures ANOVA with all values for the missing subject removed:
we observed similar results (see Table 2). For all ANOVA results
reported in this paper, Mauchly’s test revealed that the data did not
violate the assumption of sphericity, so we report uncorrected P
values.

Lateral occipital complex localizer. We identified two subregions
of the lateral occipital complex, LO and pFus, using a functional
localizer developed by the Stanford Vision and Perception Laboratory
(Stigliani et al. 2015) to identify voxels that showed enhanced re-
sponses to intact objects (cars and guitars) vs. phase-scrambled
versions of the same images. Between two and four runs of this task
were performed during functional scanning sessions, with each run
lasting 5 min and 16 s. During each run, subjects viewed blocks of
sequentially presented images in a particular category (cars, guitars,
faces, houses, body parts, scrambled objects) and performed a one-
back repeat detection task (mean d= � 3.09 � 0.49). We used a GLM
to define voxels that showed significantly higher BOLD responses
during car/guitar blocks vs. scrambled blocks (FDR-corrected
q � 0.05). We then projected this mask onto a computationally
inflated mesh of the gray matter-white matter boundary in each
subject and defined LO and pFus on this mesh, based on the mask in
conjunction with anatomical landmarks (Vinberg and Grill-Spector
2008).

Object localizer task. After the ROIs described above were defined,
voxels within each ROI were thresholded on the basis of their visual
responsiveness during performance on an independent novel object
matching task. Subjects performed two to three runs of this task
during each scanning session. This task was identical to the identity
task described above, except that the alternate object set was used
(e.g., if the subject viewed set A during the main one-back task runs,
they viewed set B during the localizer). The object exemplars shown
during this task were randomly selected for each run. Performance on
this task was consistently lower than performance on the main
one-back tasks, due to the fact that subjects had not been trained on
this stimulus set (mean d= � �0.23 � 0.14).

For each subject, we combined data from all object localizer runs
to generate a statistical parametric map of voxel responsiveness, based
on a GLM in which all image presentations were modeled as a single
predictor. We then selected only the voxels whose BOLD signal was
significantly modulated by image presentation events (FDR-corrected
q � 0.05). This limited the voxels selected in each ROI to those that
were responsive to object stimuli that were visually similar (but not
identical) to those presented during the main task. For one ROI in the
MD network (AI/FO), this thresholding procedure yielded fewer than
10 voxels for several subjects, so for this ROI we chose to analyze all
the voxels that were defined by the MD localizer. The final definitions
of each ROI (centers and sizes) following this thresholding procedure
are summarized in Table 1.

MVPA decoding. The goal of our MVPA analysis was to estimate
the amount of linearly decodable information about object “match”
status in each task dimension (identity and viewpoint) that was
represented in each ROI during each task. Because match status
depended on the relation of each object to the previous one in the
sequence, each object had an equal probability of appearing as a
match or a nonmatch in each dimension, so this decoding was
orthogonal to the visual properties of the objects. To evaluate the
behavioral relevance of information about match/nonmatch status in
each ROI, we also assessed how match decoding was affected by the
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Table 1. Centers and sizes of the final ROIs defined for each
subject, following functional localization and additional
thresholding with a novel object localizer

Subject

Center No. of Voxels

LH RH LH RH

V1
1 [�16, �94, �12] [12, �92, �17] 331 368
2 [�9, �82, 8] [6, �82, 6] 797 444
3 [�15, �97, 7] [11, �97, 5] 84 192
4 [�12, �97, �8] [14, �94, 4] 249 186
5 [�6, �95, �4] [16, �95, 1] 273 164
6 [�8, �90, �12] [13, �89, �1] 269 434
7 [�9, �88, �5] [11, �92, �5] 406 393
8 [�11, �92, �8] [10, �91, �4] 348 254
9 [�12, �93, �8] [15, �96, �5] 477 324

10 [�16, �89, �18] [12, �92, �9] 299 239

V2

1 [�23, �92, �11] [14, �90, �15] 325 311
2 [�14, �86, 7] [19, �82, 5] 495 602
3 [�17, �92, 4] [15, �93, 3] 271 226
4 [�13, �93, �7] [18, �92, 4] 354 212
5 [�10, �94, �8] [19, �93, 5] 179 167
6 [�13, �85, �13] [18, �89, �1] 272 388
7 [�14, �93, �6] [15, �93, �5] 363 419
8 [�14, �87, �12] [16, �89, �8] 416 308
9 [�13, �92, �6] [14, �90, �6] 277 300

10 [�20, �88, �20] [17, �90, �7] 370 364

V3

1 [�25, �85, �8] [22, �88, �9] 331 360
2 [�22, �83, 1] [12, �88, 6] 500 515
3 [�19, �87, 6] [21, �89, 3] 247 320
4 [�20, �90, �3] [22, �85, 6] 359 216
5 [�20, �88, �7] [29, �85, 1] 382 292
6 [�23, �85, �9] [27, �84, �0] 259 474
7 [�24, �90, �3] [23, �88, �5] 646 703
8 [�22, �83, �16] [25, �88, �7] 432 348
9 [�18, �89, �3] [22, �86, �6] 442 318

10 [�23, �87, �16] [24, �84, �8] 366 630

V3AB

1 [�26, �84, 7] [28, �83, 7] 136 200
2 [�28, �85, 19] [23, �80, 30] 425 253
3 [�25, �84, 21] [28, �85, 22] 269 214
4 [�26, �83, 11] [26, �77, 19] 141 167
5 [�26, �87, 17] [34, �79, 19] 281 396
6 [�31, �86, 12] [31, �78, 20] 120 137
7 [�29, �83, 12] [24, �78, 15] 357 306
8 [�36, �84, 5] [36, �83, 1] 350 474
9 [�24, �89, 18] [30, �83, 10] 341 329

10 [�25, �91, �2] [28, �78, 18] 450 311

V4

1 [�27, �75, �16] [26, �75, �14] 116 245
2 [�29, �76, �8] [25, �76, �8] 336 299
3 [�29, �78, �7] [22, �78, �9] 303 154
4 [�22, �80, �13] [25, �75, �9] 75 158
5 [�27, �79, �16] [32, �75, �12] 243 139
6 [�29, �75, �17] [32, �72, �14] 115 272
7 [�29, �76, �14] [29, �76, �14] 406 380
8 [�31, �75, �23] [30, �83, �18] 261 164
9 [�24, �76, �18] [26, �77, �16] 304 362

10 [�32, �76, �22] [24, �75, �17] 243 329

LO

1 [�43, �76, �13] [37, �78, �10] 617 798
2 [�40, �77, 3] [37, �78, 5] 911 1113
3 [�38, �81, 5] [35, �81, 1] 253 314
4 [�33, �87, 1] [34, �80, 0] 163 177
5 [�35, �84, 4] [38, �81, 5] 207 132

Continued

Table 1. Continued

Subject

Center No. of Voxels

LH RH LH RH

6 [�40,�78, �7] [40,�73, �3] 933 724
7 [�35,�88, �4] [32,�82, �1] 372 449
8 [�41,�73,�13] [38,�76,�14] 812 347
9 [�34,�80, �5] [37,�78, �7] 792 634

10 [�47,�76,�14] [35,�81, 2] 119 77

pFus

1 [�34,�75,�16] [34,�51,�15] 215 54
2 [�37,�63,�10] [36,�62, �9] 354 415
3 [�35,�69, �8] [34,�70, �9] 233 98
4 [�37,�80,�10] [36,�67, �8] 252 341
5 [�43,�66, �8] [40,�64,�10] 201 127
6 [�37,�63,�16] [33,�55,�15] 234 268
7 [�38,�68,�15] [34,�61,�17] 87 184
8 [�37,�54,�21] [32,�62,�20] 391 656
9 [�33,�63,�12] [35,�61,�15] 96 447

10 [�45,�67,�12] [39,�61,�15] 207 117

IPS0–1

1 [�26,�80, 15] [25,�79, 21] 162 236
2 [�31,�78, 27] [22,�61, 40] 369 960
3 [�22,�70, 32] [24,�75, 33] 331 280
4 [�22,�70, 28] [25,�67, 33] 185 175
5 [�25,�70, 26] [30,�67, 30] 524 397
6 [�30,�67, 26] [22,�64, 40] 30 269
7 [�25,�76, 25] [24,�73, 28] 478 586
8 [�34,�74, 15] [32,�71, 13] 401 375
9 [�24,�75, 24] [30,�74, 16] 675 482

10 [�27,�88, 9] [26,�67, 33] 473 499

IPS2–3

1 [�29,�66, 32] [25,�72, 39] 140 126
2 [�25,�63, 35] [24,�46, 51] 488 491
3 [�25,�54, 46] [22,�61, 44] 283 203
4 [�24,�62, 45] [24,�60, 39] 135 47
5 [�27,�63, 43] [22,�63, 43] 368 270
6 [�26,�62, 35] [24,�54, 45] 221 175
7 [�22,�71, 39] [24,�61, 37] 395 352
8 [�26,�68, 27] [27,�63, 23] 214 161
9 [�29,�62, 31] [25,�63, 29] 283 388

10 [�27,�71, 23] [25,�55, 45] 390 510

sIPS

1 [�34,�55, 36] [34,�54, 37] 65 204
2 [�34,�40, 42] [31,�47, 50] 155 283
3 [�31,�50, 43] [26,�60, 45] 203 145
4 [�24,�62, 43] [29,�55, 44] 190 559
5 [�32,�53, 47] [34,�50, 45] 472 708
6 [�35,�48, 43] [27,�51, 48] 527 434
7 [�35,�54, 41] [33,�52, 44] 335 919
8 [�28,�60, 45] [28,�59, 41] 540 654
9 [�34,�53, 42] [32,�54, 40] 486 805

10 [�28,�55, 41] [31,�51, 44] 1057 665

sPCS
1
2 [�22, 4, 60] [30, 2, 54] 4 28
3 [�25, �4, 54] [29, 0, 53] 35 19
4 [�31, �4, 50] [36, �3, 49] 5 52
5 [�29, �4, 57] [29, �4, 52] 56 142
6 [�33, 2, 54] [36, 2, 55] 152 172
7 [�28, �5, 54] [29, �1, 55] 19 348
8 [�37, �1, 56] [29, 1, 53] 19 349
9 [�27, �3, 52] [27, �3, 50] 189 209

10 [�25, �3, 56] [26, 2, 55] 95 109
Continued
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task relevance of each match dimension, as well as how it differed on
correct and incorrect trials.

Several ROIs did show a significant difference in mean signal
between the identity and viewpoint tasks (data not shown). Therefore,
before performing MVPA, we first mean-centered the voxel activation
pattern on each trial by calculating the mean across voxels on each
trial and subtracting this value from the voxel activation pattern. This
ensured that classification was based on information encoded in the
relative pattern of activity across voxels in each ROI, rather than
information about mean signal changes across conditions.

We performed all decoding analyses using a binary classifier based
on the normalized Euclidean distance. To avoid overfitting, we used a
leave-one-run-out cross-validation scheme so that each run served as
the test set once. Before starting this analysis, we removed all trials
that were the first in a block, because they could not be labeled as a
match or nonmatch. Next, we divided data in the training set into two
groups based on status as a match in the dimension of interest. For
each of these two groups, we then calculated a mean voxel activation
pattern (e.g., averaging the response of each voxel over all trials in the
group). We also calculated the pooled variance of each voxel’s

response across the two groups. Next, for each trial in the test set, we
calculated the normalized Euclidean distance to each of the mean
patterns of the training set groups, weighting each voxel’s contribu-
tion on the basis of its pooled variance. We then assigned each test set
trial to the group with the minimum normalized Euclidean distance.
Specifically, for a training set including n total trials, with na trials in
condition A and nb trials in condition B, and v voxels in each

activation pattern, we can define a�, �a
2, b�, and �b

2 as vectors of size
[1xv] describing the mean and variance of each voxel’s response
within conditions A and B, respectively. If x is a [1xv] vector
describing a voxel activation pattern from a single trial in the test set,
the normalized Euclidean distance from x to each of the two training
set conditions is

dx→a ���
i�1

v � xi � a�i

�p
2

i

�2

dx→b ���
i�1

v � xi � b�i

�p
2

i

�2

where �p
2 is a [1xv] vector describing the pooled variance of each

voxel over conditions A and B:

�p
2 �

na�a
2 � nb�b

2

na � nb

The final label assigned to each test set trial by the classifier was
obtained by finding the minimum value between dx¡a and dx¡b.
Finally, we computed a single value for classifier performance across
the entire data set by calculating d= with the formula

d' � Z�hit rate� � Z� false positive rate� ,

where the hit rate is defined as the proportion of test samples in
condition A accurately classified as belonging to condition A, and the
false positive rate is the proportion of test samples in condition B
inaccurately classified as belonging to condition A. The function Z
�p�, p � �0,1	 is the inverse of the cumulative distribution of the
Gaussian distribution.

Because the frequency of matches in our task was less than 50%,
the training set for the classifier was initially unbalanced. To correct
for this, we performed downsampling on the larger training set group
(nonmatch trials) by randomly sampling N trials without replacement
from the larger set, where N is the number of samples in the smaller
set. We performed 1,000 iterations of this random downsampling and
averaged the results for d= over all iterations.

We assessed the significance of classifier decoding performance in
each ROI using a permutation test in which we shuffled the labels of
all trials in the training set and computed decoding performance on
this shuffled data set. We repeated this procedure over 1,000 iterations
to compute a null distribution of d= for each subject and each ROI. For
each shuffling iteration, we performed downsampling to balance the
training set as described above, but to reduce the computational time,
we used only 100 iterations. To compute significance at the group
level, we averaged the null distributions over all subjects to obtain a
single distribution of 1,000 d= values, and averaged the d= values for
the real data set over all subjects to obtain a subject-average d= value.
We obtained a P value by calculating the proportion of shuffling
iterations on which the shuffled d= value exceeded the real d= value,
and the proportion on which the real d= value exceeded the shuffled d=
value, and taking the minimum value multiplied by 2. We then
performed FDR correction across ROIs within each condition and
match type, at the 0.01 and 0.05 significance levels (Benjamini and
Yekutieli 2001).

The above analysis was carried out separately within each ROI,
task, and match dimension separately to estimate information about
viewpoint and identity match status when each dimension was rele-

Table 1. Continued

Subject

Center No. of Voxels

LH RH LH RH

iPCS

1 [�47, 10,34] [47, 6, 35] 169 222
2 [�45, 7,35] [46, 8, 37] 25 44
3 [�48, 8,23] [47, 8, 29] 103 121
4 [�34,�2,32] [42, 6, 35] 30 217
5 [�46, 2,32] [44, 4, 28] 66 135
6 [�47, 6,29] [46, 7, 28] 216 150
7 [�42,�1,33] [41, 6, 32] 150 422
8 [�46, 8,30] [50, 5, 32] 124 154
9 [�43, 5,33] [42, 5, 34] 472 483

10 [�45, 1,30] [45, 6, 33] 130 326

AI/FO

1 [�35, 19, 4] [37,17, 5] 244 532
2 [�37, 17, 3] [38,18, 1] 267 340
3 [�35, 15, 2] [32,18, 5] 120 115
4 [�37, 18, 4] [37,18, 3] 354 510
5 [�34, 20, 1] [33,19,�1] 47 34
6 [�38, 18, 2] [37,20, 2] 289 238
7 [�35, 17, 2] [35,18, 2] 145 388
8 [�36, 16, 4] [35,17, 3] 218 485
9 [�37, 19, 4] [37,17, 5] 486 551

10 [�37, 19, 3] [33,20, 5] 53 150

IFS

1 [�37, 35,28] [40,30, 28] 9 46
2 [�29, 47,17] [34,37, 20] 47 235
3 [�44, 33,22] [42,31, 22] 44 55
4 [�42, 29,23] [38,30, 23] 5 96
5 [�28, 49,21] [34,41, 18] 53 105
6 [�35, 42,26] [41,39, 26] 105 85
7 [�40, 36,19] [40,40, 21] 152 460
8 [�40, 33,18] [41,33, 22] 71 308
9 [�41, 34,26] [44,30, 27] 242 189

10 [�39, 37,21] [38,43, 24] 33 102

Data are centers and sizes of final regions of interest (ROIs) in early visual
cortex (V1, V2, V3, V3AB, V4), lateral occipital complex (LO, pFus),
intraparietal sulcus [IPS0–1, IPS2–3, superior IPS (sIPS)], and the multiple-
demand network [superior precentral sulcus (sPCS), inferior precentral sulcus
(iPCS), anterior insula/frontal operculum (AI/FO), and inferior frontal sulcus
(IFS)] for each subject (see METHODS for details). Coordinates of each ROI
center are described in Talairach space, where X � left-right axis (negative is
left), Y � anterior-posterior axis (negative is posterior), and Z � inferior-
superior axis (negative is inferior).
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vant and irrelevant. Next, we entered all d= values into a three-way
repeated-measures ANOVA with factors of task, ROI, and relevance.
Following this, to more closely investigate interactions between ROI
and relevance, we used nonparametric paired t-tests to compare the d=
distributions for the relevant match dimension vs. the irrelevant match
dimension, within each task and ROI separately. This test consisted of
performing 10,000 iterations in which we randomly permuted the
relevance labels corresponding to the d= values, maintaining the
subject labels. After randomly permuting the labels, we calculated
the difference in d= between the two conditions for each subject
and used these 10 difference values to calculate a t-statistic. We
then compared the distribution of these null t-statistics with the
value of the t-statistic found with the real relevance labels and used
this to generate a two-tailed P value. These P values were FDR
corrected across ROIs at both the 0.05 and 0.01 levels.

In the first set of analyses (see Figs. 5 and 6), which focused on the
overall performance of the classifier, we performed the above steps
after removing all trials where the subject was incorrect or did not
respond (on average, 7% of trials were no-response trials). In the next
set of analyses (see Figs. 8 and 9), we were interested in whether
information in each ROI about the task-relevant match dimension was
associated with task performance. To evaluate this, we included
incorrect and no-response trials in both the training and testing sets.
We considered all incorrect and no-response trials as a single group,
which we refer to as “incorrect.” For each trial in the test set, we then
used the normalized Euclidean distance (calculations described
above) as a metric of classifier evidence in favor of the actual trial
label, where

dx→incorrect � dx→correct � evidence.

We then compared the distributions of evidence between correct
and incorrect test set trials. Because there were many more correct
than incorrect test set trials, we performed an additional step of
downsampling to balance the training set. We divided training set
trials into four groups, based on their status as a match and the
correctness of the subject’s response, and downsampled the number of
trials in all four groups to match the number of trials in the smallest
set. This was performed over 1,000 iterations, and the resulting values
for classifier evidence were averaged. We assessed significance of the
difference between correct and incorrect trials using a permutation test
as described above.

In the main analyses described above, we performed MVPA using
all voxels from each localized ROI. Additionally, to control for
differences in the number of voxels between ROIs, we repeated all
analyses after restricting the number of voxels to 50 in each area.
Overall, reducing the number of voxels did not lead to a dramatic
change in the patterns of decoding performance across ROIs. These
analyses are all reported in the figures.

Experimental design and statistical analyses. The sample size for
this experiment was 10, with subjects run in 1 or 2 scanning sessions
to collect at least 16–22 runs of experimental data, as well as between
2 and 6 runs of each functional localizer described above. This sample
size was determined before data collection was started, based on
sample sizes used by past experiments with similar methodology in
our laboratory. For details of MVPA analyses and related statistics,
see MVPA decoding. Briefly, all statistical tests, including repeated-
measures ANOVAs, were performed using MATLAB R2017a (The
MathWorks, Natick, MA) and were based on within-subject factors.
The significance of MVPA results was assessed using permutation
testing, with the final test for significance performed across all
subjects. Pairwise comparisons of classifier output (e.g., classifier
evidence on correct vs. incorrect trials, decoding d= for task-relevant
vs. task-irrelevant match status) were performed using a nonparamet-
ric permutation-based t-test. Multiple comparisons correction was
performed using FDR correction as described in Benjamini and
Yekutieli (2001). We chose two thresholds because the 0.05 value

provides slightly more power to detect weaker effects, whereas the
0.01 value provides a more conservative threshold.

Image similarity analysis. The viewpoint and identity tasks were
designed so that the low-level shape similarity of the images would
not be explicitly informative about the status of each image as a
match. Thus, when we performed classification on the status of each
image as a target in each dimension, we intended to capture informa-
tion that was related to perception of the abstract dimensions of each
object, rather than low-level properties such as its shape in a 2D
projection. However, because of factors such as the small number of
objects in our stimulus set, it is possible that there was some coinci-
dental, systematic structure in the similarity between pairs of objects
such that low-level image similarity was partially informative about
the status of each image as a match in either identity or viewpoint.

To evaluate this possibility, for each trial in the sequence of images
shown to each subject, we determined the image similarity between
the current and previous images by unwrapping each image (1,000 �
1,000 pixels) into a single vector and calculating the Pearson corre-
lation coefficient between each pair of vectors. For this analysis, we
removed trials that were a match in both category and viewpoint
(identical images by design) and sorted the remaining trials according
to whether the current and previous images were actually a match in
the dimension of interest. Mean image similarity between match and
nonmatch trials was compared using a one-tailed t-test (see Fig. 6D).
This resulted in a P value for each subject in each condition, which
was used to evaluate the extent to which low-level image similarity
may have been informative about match status.

In addition to using the Pearson correlation to measure similarity,
we also assessed similarity by passing each image through a Gabor
wavelet model meant to simulate the responses of V1 neurons to the
spatial frequency and orientation content of the image (Pinto et al.
2008). We then compared the effectiveness of this V1 model and the
simpler pixel model at capturing the responses in V1 from our fMRI
data, by calculating a similarity matrix for each pairwise comparison
of images (24 � 24), based on 1) the V1 model, 2) the pixel model,
and 3) the voxel activation patterns recorded in V1 for each subject.
We found that across all subjects, the pixel model was more correlated
with the V1 voxel responses than was the V1 model (data not shown).
Therefore, in the interest of parsimony, we used the simpler pixel
model for all image similarity analyses.

RESULTS

Behavioral performance. Subjects (n � 10) performed al-
ternating runs of the identity task and the viewpoint task while
undergoing fMRI. Runs were always presented in matched
pairs so that the object sequence and visual stimulation were
identical between runs of the identity task and viewpoint task.
We found no significant difference in performance (d= for
identity: 1.47 � 0.24, d= for viewpoint: 1.81 � 0.34; paired
2-tailed t-test, P � 0.2054; Fig. 3A;) and no significant differ-
ence in response times (RT for identity: 1.15 � 0.06 s, RT for
viewpoint: 1.17 � 0.05 s; paired 2-tailed t-test, P � 0.6124;
Fig. 3B) on the two tasks across subjects. Performance and
response time for each task also did not differ as a function of
the object set subjects had been assigned to (d= for identity, set
A: 1.50 � 0.22, d= for identity, set B: 1.43 � 0.27, P � 0.8930;
d= for viewpoint, set A: 1.76 � 0.30, d= for viewpoint, set B:
1.86 � 0.42, P � 0.9024; RT for identity, set A: 1.11 � 0.04
s, RT for identity, set B: 1.19 � 0.07 s, P � 0.5343; RT for
viewpoint, set A: 1.18 � 0.02, RT for viewpoint, set B:
1.16 � 0.08, P � 0.8843; all are 2-tailed t-tests).

Univariate BOLD signal does not show match suppression.
First, we examined whether the status of each image as a match
in the task-relevant dimension (e.g., identity match status
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during the identity task; viewpoint match status during the
viewpoint task) was reflected in a change in the mean ampli-
tude of BOLD response in any visual area. On the basis of
previous fMRI studies (Grill-Spector et al. 1999; Henson 2003)
and electrophysiology studies (Meyer and Rust 2018; Miller et
al. 1991), we predicted that the repetition of object identity or
viewpoint might result in response suppression (often referred
to as repetition suppression). However, in all but 1 of the 14
ROIs we examined (Fig. 4), we found no significant difference
in the mean signal amplitude between matches and non-
matches. In the one ROI showing a significant effect (AI/FO),
mean signal was actually higher on match trials than on
nonmatch trials. We suspect that the absence of repetition
suppression is due to differences in task demands between our
experiment and previous work, particularly the fact that iden-
tity and viewpoint matches were task relevant in our paradigm
and thus may have evoked larger attention-modulated re-
sponses that counteracted any repetition suppression effects
(see DISCUSSION for details). Note that in all subsequent multi-
variate analyses, we first de-meaned responses across all vox-
els in each ROI so that single-trial voxel activation patterns
were centered at zero and any small univariate effects could not
contribute to decoding performance (see METHODS).

Multivariate activation patterns reflect task-relevant match
status. Next, we examined how voxel activation patterns in
each ROI reflected the status of a stimulus as a match in
viewpoint and identity, and how representations of viewpoint
and identity match status were influenced by the task relevance
of each dimension. During each task, a correct behavioral
response depended on the object being a match to the previous
object in the relevant dimension (identity or viewpoint),
whereas match status in the other dimension was irrelevant.
Therefore, we expected that information about the match status
of an object in each dimension would be more strongly repre-
sented when that dimension was task relevant.

Indeed, status as a match along the task-relevant dimension,
measured by classifier performance (d=), was represented
widely within the ROIs we examined, whereas the irrelevant
match was not represented at an above-chance level in any ROI
(Fig. 5). Information about the task-relevant match increased
along a posterior-to-anterior axis such that match status was
represented most strongly in MD and IPS ROIs but was
comparatively weaker in early visual cortex and the lateral
occipital complex (LOC). Relevant match decoding perfor-
mance was above chance for all MD ROIs for both the identity

and viewpoint tasks, and was also above chance for LO,
V3AB, and V2 for both tasks. Decoding performance was
above chance in V1, V4, and pFus for the identity task only.

The general pattern of decoding performance was similar
across tasks, although there was a trend toward higher relevant
match decoding performance in IPS for the viewpoint task than
for the identity task. There was also an opposite trend in V4
and pFus for higher relevant match decoding during the iden-
tity task than during the viewpoint task. A three-way repeated-
measures ANOVA with factors of task, ROI, and relevance
revealed a main effect of relevance [F(1,9) � 46.219, P �
10�4], a main effect of ROI [F(13,117) � 9.930, P � 10�12],
and a relevance � ROI interaction [F(13,117) � 13.981, P �
10�17], but no main effect of task [F(1,9) � 1.819, P �
0.2104]. The interactions task � ROI [F(13,117) � 1.838, P �
0.0450] and task � relevance [F(1,9) � 1.019, P � 0.3392]
were not significant at � � 0.01. We further investigated the
ROI � relevance interaction, using paired t-tests to compare
decoding of the relevant and irrelevant dimensions, and found
that the effect of relevance was significant for all MD regions
in both tasks, LO in both tasks, as well as V3AB, V4, and pFus
for the identity task only (Fig. 5). These results were similar
when we used all voxels in each area (Fig. 5, A and B) and
when we used 50 voxels in each area (Fig. 5, C and D).

Because our MD localizer failed to yield any voxels in the
sPCS ROI for one subject, we used an interpolation method
to fill in this value before performing the repeated-measures
ANOVA (see METHODS for details). As an alternative
method, we also performed the same test after removing all
data from the subject that was missing sPCS, and we found
similar results (Table 2). We note, however, that the task �
ROI interaction term, which was not significant when the
interpolation method was used, was significant when the
missing subject was removed entirely [F(13,104) � 2.530,
P � 0.0047].

Control analyses for visually driven match representations.
To perform the identity and viewpoint tasks, subjects were
required to use representations of object identity and viewpoint
that were largely invariant to shape. However, a subset of trials
in each task could, in principle, be solved based only on shape
similarity between the previous and current objects. In the
viewpoint task, because subtle differences between exemplars
were not task relevant, the group of trials that could be solved
based only on shape similarity included all trials that were
matches in both category and viewpoint. In the identity task,
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performance of a single subject, averaged
over runs of each task. Error bars are �SE.
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the group of trials that could be solved on the basis of shape
similarity included all trials that were an exact match to the
previous image in category, exemplar, and viewpoint. There-
fore, it is possible that some of the match status classification
we observed in Fig. 5 was driven by the detection of shape
similarity. To test for this possibility, we removed all trials that
were a match in both category and viewpoint, leaving a set of
trials in which the shape similarity was entirely uninformative
about match status. We then performed classification on this
reduced data set as before.

For the viewpoint task, we now found an important differ-
ence between visual and MD regions: whereas decoding of
viewpoint matches remained above chance in all MD and IPS

regions, it dropped to chance in LOC and early visual cortex
(Fig. 6B). Thus, whereas early visual and LOC representations
of viewpoint match status appeared to rely largely on low-level
shape similarity, MD regions encoded viewpoint match status
even when shape similarity could not be used to define a
match.

During the identity task, however, even after removal of all
trials that were a match in both category and viewpoint,
decoding of identity match status remained above chance in all
ROIs examined (Fig. 6A). The observation of above-chance
identity match decoding in early visual areas was surprising
given that these areas are not expected to encode abstract,
viewpoint-independent representations of target status. There-
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fore, we wondered whether the remaining set of images may
have had some shared features that supported match classifi-
cation. Indeed, when we assessed the pixelwise similarity
between images (see METHODS) belonging to each stimulus set,

we found that in four of the subjects assigned to object set A,
pixelwise similarity between images was significantly predic-
tive of identity match status (Fig. 6D). We thus hypothesized
that the above-chance decoding of identity match status ob-
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served in early visual areas might be driven by this group of
subjects.

In line with this prediction, when we reanalyzed decoding
performance using only subjects from set B, identity match
decoding was no longer significant in V1, V2, V3, V4, and
pFus, even though it was still well above chance in other
parietal and MD areas. This pattern suggests that the above-
chance decoding accuracy for identity match status in these
earlier visual ROIs may have been related to low-level image
features (Fig. 6C). In contrast, even after this additional source
of low-level image similarity was removed, MD and IPS
regions still encoded robust representations of identity match
status. Furthermore, match decoding in the MD regions was
individually strong in the majority of subjects (Fig. 7).

Behavioral performance is closely linked to activation pat-
terns in the MD network. Having established that several ROIs,
including all MD network ROIs, represent the status of an
object as a match in the task-relevant dimension, we next
sought to determine whether these representations were related
to behavioral performance. To answer this question, we used
the normalized Euclidean distance to calculate a continuous
measure of the classifier’s evidence at predicting the correct

label for each trial in the test set (see METHODS). We then
calculated the mean classifier evidence for all correct and
incorrect trials. Because the previous analysis (Fig. 5) indicated
no significant effect of task on relevant match decoding, we
combined all trials across the identity and viewpoint tasks for
this analysis (Fig. 8).

In all regions of the MD network and IPS, we found that
classifier evidence was significantly higher on correct than
incorrect trials. In contrast, we found no significant effect of
behavior on classifier evidence in early visual cortex or in the
LOC. Thus representations in IPS and MD ROIs, but not any
of the other regions that we evaluated, were significantly
associated with task performance. We also verified that this
effect was similar using data from each task separately (Fig. 9)
and when voxel number was matched across ROIs (Fig. 8B and
Fig. 9, C and D).

DISCUSSION

In this study we used fMRI and pattern classification meth-
ods to investigate the role of different brain areas in signaling
task-relevant matches across identity-preserving transforma-

Table 2. Results of three-way repeated-measures ANOVA on decoding results

SumSq df MeanSq F Statistic P Value

RM ANOVA, using interpolation

(Intercept) 23.3373 1 23.3373 55.1700 <10–4

Error 3.8071 9 0.4230
(Intercept):ROI 4.7641 13 0.3665 9.9297 <10–12

Error(ROI) 4.3180 117 0.0369
(Intercept):Task 0.1433 1 0.1433 1.8193 0.2104
Error(Task) 0.7090 9 0.0788
(Intercept):Relevance 13.4705 1 13.4705 46.2189 0.0001
Error(Relevance) 2.6230 9 0.2914
(Intercept):ROI:Task 0.6030 13 0.0464 1.8375 0.0450
Error(ROI:Task) 2.9535 117 0.0252
(Intercept):ROI:Relevance 5.5957 13 0.4304 13.9806 <10–17

Error(ROI:Relevance) 3.6022 117 0.0308
(Intercept):Task:Relevance 0.1618 1 0.1618 1.0185 0.3392
Error(Task:Relevance) 1.4296 9 0.1588
(Intercept):ROI:Task:Relevance 0.3903 13 0.0300 1.0157 0.4411
Error(ROI:Task:Relevance) 3.4585 117 0.0296

RM ANOVA, with subject 1 removed

(Intercept) 22.4745 1 22.4745 50.5309 0.0001
Error 3.5581 8 0.4448
(Intercept):ROI 4.7895 13 0.3684 9.9486 <10–12

Error(ROI) 3.8514 104 0.0370
(Intercept):Task 0.1458 1 0.1458 1.6572 0.2340
Error(Task) 0.7039 8 0.0880
(Intercept):Relevance 13.2417 1 13.2417 44.5775 0.0002
Error(Relevance) 2.3764 8 0.2970
(Intercept):ROI:Task 0.7977 13 0.0614 2.5299 0.0047
Error(ROI:Task) 2.5227 104 0.0243
(Intercept):ROI:Relevance 5.0628 13 0.3894 13.4838 <10–15

Error(ROI:Relevance) 3.0038 104 0.0289
(Intercept):Task:Relevance 0.0959 1 0.0959 0.5569 0.4769
Error(Task:Relevance) 1.3779 8 0.1722
(Intercept):ROI:Task:Relevance 0.4434 13 0.0341 1.0929 0.3734
Error(ROI:Task:Relevance) 3.2455 104 0.0312

Data are the results of a 3-way repeated-measures (RM) ANOVA with the factors region of interest (ROI), task, and relevance, performed on the decoding
results shown in Fig. 5, A and B. We were unable to define the superior precentral sulcus (sPCS) ROI in 1 of 10 subjects and used two different methods to address
this missing value before running the RM ANOVA. Results are shown for both an interpolation method (see METHODS for details) and with all data removed
corresponding to the subject who was missing sPCS (using 9/10 subjects). Bold values indicate P values that were significant at � � 0.01. For both tests,
Mauchly’s test revealed that the data did not violate the assumption of sphericity, so we report uncorrected P values. df, degrees of freedom; MeanSq, mean
square; SumSq, sum of squares.
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tions. Specifically, subjects performed a task that required them
to identify matches in either the identity or the viewpoint of
novel objects. Consistent with previous work, we found that
areas of ventral visual cortex represent information about the
status of an object as a relevant match (Fig. 5; Lueschow et al.
1994; Miller and Desimone 1994; Pagan et al. 2013; Woloszyn
and Sheinberg 2009). However, our results also suggest a key
role for the MD network in this match identification task, with
MD match representations showing specificity to task-relevant
dimensions (Fig. 5), as well as invariance to low-level visual
features (Fig. 6). Importantly, the present data also establish a

significant link between task performance and the strength of
MD match representations (Fig. 8). In contrast, in early visual
and ventral object-selective cortex, we found comparatively
weaker evidence for representations of match status and no
significant associations with task performance. These results
suggest that MD regions play a key role in computing flexible
and abstract target representations that are likely to be impor-
tant for task performance.

In contrast to our MVPA results, univariate signal ampli-
tude in almost all ROIs was not significantly modulated by
match status. This finding differs from many past fMRI
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studies (Grill-Spector et al. 1999; Henson 2003; Turk-
Browne et al. 2007) that have observed response suppres-
sion as a result of object repetition (or “repetition suppres-
sion”). One explanation for this divergence in findings is
that in our task, the repetition of identity and viewpoint is
task relevant, meaning that repetition-related signals are
mixed with signals related to task performance. This ac-
count is consistent with prior electrophysiology studies
reporting that when an object’s match status is task relevant,
neural response modulations are heterogeneous, including
both enhancement and suppression (Engel and Wang 2011;
Lui and Pasternak 2011; Miller and Desimone 1994; Pagan
et al. 2013; Roth and Rust 2018). This type of signal would
be detectable using multivariate decoding methods but in
univariate analyses may be obscured by averaging across all

voxels in an ROI (Kamitani and Tong 2005; Norman et al.
2006; Serences and Saproo 2012). Therefore, our data are
consistent with the interpretation that match representations
are not an automatic by-product of stimulus repetition, but
are linked to the task relevance of each stimulus.

Representations of identity and viewpoint match status were
weaker in early visual and ventral ROIs compared with ROIs
in the MD network. Moreover, several control analyses suggest
that the representations in some of these occipital and ventral
regions were driven primarily by low-level image statistics, as
opposed to an object’s status as a match in the task-relevant
dimension. First, after removing all trials in which the current
and previous objects were matches in both category and view-
point, we found that viewpoint match decoding during the
viewpoint task dropped to chance in all ROIs except for those

Fig. 6. Control analyses related to Fig. 5: viewpoint and identity match information in MD regions is not driven by low-level image statistics. A and B: to address the
possibility that match status could have been inferred from low-level visual properties, we removed all trials in which an object had a high degree of shape similarity
to the previous object and repeated the analyses of Fig. 5. A: identity match information remained above chance in all regions. B: viewpoint match information dropped
to chance in the early visual cortex (EVC; comprising V1, V2, V3, V3AB, and V4) and lateral occipital complex (LOC; comprising LO and pFus) but remained above
chance in multiple-demand (MD) network [superior precentral sulcus (sPCS), inferior precentral sulcus (iPCS), anterior insula/frontal operculum (AI/FO), and inferior
frontal sulcus (IFS)] regions of interest (ROIs). For individual subject data, see Fig. 7. C: after identifying that the pairwise similarity between images in object set A
was informative about identity match status, we reanalyzed the identity task data using only the subjects shown object set B. Identity match classification in early visual
and ventral visual cortex drops below significance when subjects shown object set A are removed but remains above chance in MD regions. P values were computed
at the subject level over these 5 subjects and FDR-corrected across ROIs. Open circles indicate significance at q � 0.05; closed circles indicate significance at q � 0.01.
Circles above individual bars indicate above-chance classification performance (test against 0); circles above pairs of bars (denoted by horizontal lines) indicate significant
differences between bars (paired t-test). Error bars are �SE. D: image correlation is predictive of identity match status for several subjects in object set A. To assess the
possibility that identity match classification in EVC may have been driven by low-level similarity between pairs of images, we used the Pearson correlation coefficient
to calculate the similarity between all pairs of object images (excluding image pairs that were matched in both category and viewpoint and thus highly similar). For each
subject, we calculated the mean correlation coefficient between pairs of images that were a match in each feature vs. images that were not a match. In the plot, closed
circles indicate that this mean value was higher for matching pairs than for nonmatching pairs (� � 0.01). This finding suggests that the above-chance classification of
identity match status observed in set A subjects may have been driven by low-level image features.
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in the MD network. Additionally, a post hoc image-based
analysis revealed that one of our stimulus sets had a subtle bias
in pixel similarity such that the degree of image similarity
between each pair of objects was informative about the status
of the pair as an identity match. When we repeated our
decoding analysis using only subjects who had seen the non-
biased stimulus set, we found that identity match decoding
dropped to chance in V1, V2, V3, V4, and pFus, although it
remained above chance in V3AB and LO (and in regions of
IPS and the MD network). Together, these findings suggest that
low-level visual features may be partially responsible for the
viewpoint and identity match representations we initially ob-
served in early visual and ventral visual areas. We note,
however, that this is not a powerful test; a more targeted
experiment would be needed to rigorously assess the role of
image similarity in driving match representations in early and
ventral areas.

Our findings suggest that representations of object target
status in MD regions show more invariance to identity pre-
serving transformations than representations in ventral regions,
which are more strongly influenced by low-level visual fea-
tures. This view is consistent with several previous studies in
nonhuman primates. For instance, in tasks that require identi-
fication of targets based on their membership in abstract
categories whose boundaries are not predicted from visual
similarity, neurons in both prefrontal cortex (PFC; Cromer et
al. 2010; Freedman et al. 2001, 2003; Roy et al. 2010) and
premotor cortex (Cromer et al. 2011) encode objects’ target
status. Studies that directly compare PFC and inferotemporal
cortex (ITC) responses during these tasks have found that PFC

neurons show a higher degree of abstract category selectivity
(Freedman et al. 2003), as well as a stronger influence of
task-related effects on object representation (McKee et al.
2014), compared with ITC neurons. Past work in humans is
also consistent with a high degree of abstraction in MD
representations. A recent fMRI study found that abstract face-
identity information is represented more strongly in IPS than in
LO and the fusiform face area (Jeong and Xu 2016). Another
study found that during the delay period of a working memory
task, object information could be decoded from PFC only when
the task was nonvisual and from the posterior fusiform area
only when the task was visual, supporting a dissociation
between these regions in representing abstract and visual object
information, respectively (Lee et al. 2013). Overall, our find-
ings provide additional support for the conclusion that target
representations in frontoparietal cortex reflect abstract signals
that flexibly update to guide behavior, while ventral represen-
tations are more linked to the details of currently-viewed
images.

That said, our results do not rule out the possibility of
abstract object information or target-related information in the
ventral stream. Many past studies have demonstrated view-
point-invariant object information in human and primate ven-
tral visual cortex (Anzellotti et al. 2014; Erez et al. 2016;
Freiwald and Tsao 2010; Tanaka 1996). Furthermore, several
studies have found that match representations in ITC are
capable of generalizing across changes in size and position of
objects (Lueschow et al. 1994; Roth and Rust 2018). Despite
this, our multivariate decoding analysis failed to detect an
association with behavior in any ventral ROI. One explanation

C
la

ss
ifi

er
 C

on
fid

en
ce

 (
E

uc
lid

ea
n 

di
st

an
ce

 d
iff

er
en

ce
)

Subject Correct
Subject Incorrect

pF
usV
1

V
2

V
3

V
4

LO

IP
S

0-
1

IP
S

2-
3

sI
P

S

sP
C

S

iP
C

S

A
I-

F
O

IF
S

V
3A

B

EVC LOC IPS MD

pF
usV
1

V
2

V
3

V
4

LO

IP
S

0-
1

IP
S

2-
3

sI
P

S

sP
C

S

iP
C

S

A
I-

F
O

IF
S

V
3A

B

EVC LOC IPS MD

A B

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.2

-0.1

0

0.1

0.2

0.3

0.4
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label, plotted on the y-axis). Circles above pairs of bars indicate a significant difference between correct and incorrect trials (paired t-test). Closed circles indicate
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early visual cortex (EVC; comprising V1, V2, V3, V3AB, and V4), lateral occipital complex (LOC; comprising LO and pFus), intraparietal sulcus [IPS;
comprising IPS0–1, IPS2–3, and superior IPS (sIPS)], and the multiple-demand (MD) network [superior precentral sulcus (sPCS), inferior precentral sulcus
(iPCS), anterior insula/frontal operculum (AI/FO), and inferior frontal sulcus (IFS)].
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for this finding is that target information was present at a level
of granularity that is too fine to be detectable with our methods,
or that the signal-to-noise regime in ventral object-selective
cortex prevented us from detecting abstract object representa-
tions (Dubois et al. 2015). Furthermore, it is possible that
linearly decodable information about abstract object properties

may be more readily detectable at later stages of the ventral
visual stream, such as perirhinal cortex, compared with LO and
pFus (Erez et al. 2016; Pagan et al. 2013). Future studies will
be needed to determine the extent to which abstract matches in
identity and viewpoint may be represented within ventral
visual cortex.
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Fig. 9. Classifier evidence is associated with performance on both tasks individually. A–D: analysis is identical to that in Fig. 8 but was carried out using trials
from the identity task only (A and C) or the viewpoint task only (B and D). A and B show results using all voxels; C and D show results using 50 voxels per
region of interest (ROI): early visual cortex (EVC; comprising V1, V2, V3, V3AB, and V4), lateral occipital complex (LOC; comprising LO and pFus),
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Additionally, although match representations in early visual
cortex and the LOC were weaker than those measured in MD
regions, we did observe a consistent modulation of these
representations by task such that the relevant match was
generally represented more strongly than the irrelevant match.
This modulation was significant in LO during both tasks and in
V4, V3AB, and pFus during the identity task (Fig. 5). One
interpretation for the enhanced representation of relevant
match status is the presence of top-down feedback that influ-
ences the content of visual representations in early visual and
ventral object-selective cortex. This feedback could act to
enhance representations of visual properties that are informa-
tive for computing match status, which would result in an
enhancement of signals related to repetition of these properties.
Alternatively, these feedback signals could contain nonspecific
information about the presence of a relevant target. In either
case, our data do not provide strong evidence that the match
representations in early visual and ventral ROIs are involved in
task performance.

Finally, one novel finding of the present study is that MD
regions encode representations of matches in viewpoint across
objects, in addition to matches in identity. This is especially
interesting given that subjects had to be trained to recognize an
arbitrary viewpoint of each object as its front. Therefore, the
viewpoint dimension of an object may be regarded as a
learned, semantic dimension rather than an intuitive physical
dimension of the object. This may be another reason why we
do not see invariant representations of viewpoint match signals
in the ventral visual areas examined, because these regions
may not encode such arbitrary dimensions that define poten-
tially relevant objects. Further work will be needed to under-
stand the extent to which neural representations of object
viewpoint can be separated from visual features such as the
axis of elongation.

In conclusion, our findings support a role of MD network
regions in computing high-level and abstract target represen-
tations based on features such as viewpoint and identity, even
across changes in retinal input patterns. The match represen-
tations in these regions are modulated by task relevance and are
associated with behavioral performance on a trial-by-trial ba-
sis. In contrast, early visual and ventral object selective cortex
contained weaker evidence for match representations, with
some modulation by task, consistent with a role for top-down
feedback in enhancing representations of relevant information
at the earliest levels of processing.
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